Nitrate Leaching in Irrigated Corn and Soybean in a Semi-Arid Climate

نویسندگان

  • N. L. Klocke
  • Darrell G. Watts
  • J. P. Schneekloth
  • Don R. Davison
  • R. W. Todd
  • Anne M. Parkhurst
چکیده

Nitrate-nitrogen leached from the root zone of land in intensive corn production is a major groundwater contaminant in some of the intensively irrigated regions of the western Cornbelt, including central and western Nebraska. To obtain a clearer understanding of the amount and timing of nitrate leaching losses from irrigated crops, 14 monolithic percolation lysimeters were installed in 1989-1990 in sprinkler irrigated plots at the University of Nebraska’s West Central Research and Extension Center near North Platte, Nebraska. The lysimeters were used to provide a direct measure of leachate depth from continuous corn and a corn-soybean rotation. Both cropping systems were sprinkler irrigated and used current best management practices (BMPs) in the region for water and nitrogen management. Leachate was collected from 1990 through 1998 and analyzed for nitrate-N concentration. Results for the period 19931998 are reported here. In the semi-arid climate of West-Central Nebraska, the interaction of rainfall patterns with the period of active uptake of water by crops played a major role in defining leaching patterns. Careful irrigation scheduling did not eliminate leaching during the growing season. There was no significant difference in drainage depth between continuous corn and the corn-soybean rotation. The average drainage depth among the lysimeters was 218 mm yr–1. This was more than expected, and in part resulted from above normal precipitation during several years of the study. No water quality benefit was found for the corn-soybean rotation as compared to continuous corn. Nitrate-N concentration in the leachate from continuous corn averaged 24 mg L–1, while that from the corn-soybean rotation averaged 42 mg L–1. Total yearly nitrate leaching loss averaged 52 kg ha–1 for continuous corn and 91 kg ha–1 for the rotation. This represents the equivalent of 27% and 105% of the amount of N fertilizer applied over the six years of study. In calculating N fertilizer needs for corn in Nebraska, the recommended legume N credit of 50 kg ha–1 for a preceding crop of soybean may be too low under irrigated production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical analysis and prediction of nitrate loading and crop yield for corn–soybean rotations

Nitrate nitrogen losses through subsurface drainage and crop yield are determined by multiple climatic and management variables. The combined and interactive effects of these variables, however, are poorly understood. Our objective is to predict crop yield, nitrate concentration, drainage volume, and nitrate loss in subsurface drainage from a corn (Zea mays L.) and soybean (Glycine max (L.) Mer...

متن کامل

Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.

Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotati...

متن کامل

Controlling nitrate leaching in irrigated agriculture.

The impact of improved irrigation and nutrient practices on ground water quality was assessed at the Nebraska Management System Evaluation Area using ground water quality data collected from 16 depths at 31 strategically located multilevel samplers three times annually from 1991 to 1996. The site was sectioned into four 13.4-ha management fields: (i) a conventional furrow-irrigated corn (Zea ma...

متن کامل

In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soils.

Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation mana...

متن کامل

Evaluating and predicting agricultural management effects under tile drainage using modified APSIM

An accurate and management sensitive simulation model for tile-drained Midwestern soils is needed to optimize the use of agricultural management practices (e.g., winter cover crops) to reduce nitrate leaching without adversely affecting corn yield. Our objectives were to enhance the Agricultural Production Systems Simulator (APSIM) for tile drainage, test the modified model for several manageme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017